Glutamine attenuates obstructive cholestasis in rats via farnesoid X receptor-mediated regulation of Bsep and Mrp2.

نویسندگان

  • Bingli Liu
  • Yiming Li
  • Hong Ji
  • Hongwei Lu
  • Hua Li
  • Yakun Shi
چکیده

To investigate the protective effect of glutamine (Gln) against obstructive cholestasis in association with farnesoid X receptor (FXR) activation, an obstructive cholestasis model was established in male Sprague-Dawley rats by bile duct ligation (BDL). Serum biomarkers and hematoxylin plus eosin staining were used to identify the degree of hepatic injury in the rats with obstructive cholestasis after Gln treatment. Immunohistochemistry, real-time PCR, Western blot, cultured primary rat hepatocytes with FXR knockdown, and dual-luciferase reporter assay were performed to elucidate the mechanisms underlying Gln hepatoprotection. We found that Gln treatment protected against obstructive cholestasis induced by BDL through reducing hepatocyte injury. Upregulation of the hepatic efflux transporters small heterodimer partner (Shp), bile salt export pump (Bsep), and multidrug resistance-associated protein 2 (Mrp2), and inhibition of the hepatic uptake transporter Na+/taurocholate cotransporting polypeptide (Ntcp) and the bile acid synthesis enzyme cholesterol 7α-hydroxylase (Cyp7a1) expression were observed in rats with BDL treated with Gln in vivo. Furthermore, the regulatory effect of Gln on Bsep and Mrp2 expression was abrogated after FXR knockdown in rat primary cultured hepatocytes. Luciferase assay HepG2 cells also illustrated FXR was a direct target for Gln treatment. In conclusion, the regulation of Bsep and Mrp2 expression mediated by FXR might be an important mechanism for Gln against obstructive cholestasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benefit of farnesoid X receptor inhibition in obstructive cholestasis.

The nuclear hormone receptors farnesoid X receptor (FXR) and pregnane X receptor have been implicated in regulating bile acid, lipid, carbohydrate, and xenobiotic metabolism. Bile duct ligation was used to increase endogenous bile acids and evaluate the roles of these receptors in modulating cholestatic liver injury. FXR knockout (KO) mice were found to be protected from obstructive cholestasis...

متن کامل

Potential cholestatic activity of various therapeutic agents assessed by bile canalicular membrane vesicles isolated from rats and humans.

The active transport of solutes mediated by the bile salt export pump (BSEP/ABCB11) and multidrug resistance associated protein-2 (MRP2/ABCC2) are thought to involve bile acid-dependent and -independent bile formation, respectively. To evaluate the potential of therapeutic agents as inhibitors of such transporters on bile canalicular membranes, we examined the inhibition of the primary active t...

متن کامل

Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical for NR activation of bile acid transporter genes and is downregulated in cholestasis.

The nuclear receptor Farnesoid x receptor (FXR) is a critical regulator of multiple genes involved in bile acid homeostasis. The coactivators attracted to promoters of FXR target genes and epigenetic modifications that occur after ligand binding to FXR have not been completely defined, and it is unknown whether these processes are disrupted during cholestasis. Using a microarray, we identified ...

متن کامل

Protective effects of alisol B 23-acetate from edible botanical Rhizoma alismatis against carbon tetrachloride-induced hepatotoxicity in mice.

Carbon tetrachloride (CCl4)-induced hepatotoxicity is a common syndrome with simultaneous severe hepatocyte death and acute cholestasis. The purpose of the present study is to investigate the hepatoprotective effect of alisol B 23-acetate (AB23A), a natural triterpenoid from edible botanical Rhizoma alismatis, on acute hepatotoxicity induced by CCl4 in mice, and further to elucidate the involve...

متن کامل

Dmd054189 318..322

The bile salt export pump (BSEP, ABCB11) is predominantly responsible for the efflux of bile salts, and disruption of BSEP function is often associated with altered hepatic homeostasis of bile acids and cholestatic liver injury. Accumulating evidence suggests that many drugs can cause cholestasis through interaction with hepatic transporters. To date, a relatively strong association between dru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Canadian journal of physiology and pharmacology

دوره 95 2  شماره 

صفحات  -

تاریخ انتشار 2017